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Abstrael. We present rigorous lower bounds for spin correlations of the quantum 
Heisenberg antiferromagnet under the assumption of long range order, at zero as well as 
non-zero temperatures in the form of a cm~sover function. These are obtained by combining 
a recent inequality giving lower bounds to correlation functions with infrared upper bounds 
for the static susceptibility. The functional farms of the lower bounds are identical with 
upper (infrared) bounds for the correlation functions implying that the nature of divergence 
of the correlations near the antiferromagnetic zone boundary is determined. The form 
agrees with the prediction of the theory of spin wavcs. We also present a generalized 
inequality in quantum statistical mechanics that contains the previously known cases as 
special cases. 

A n  intwertino r ~ r ~ n t  n ~ l n ~ r  hv Pitwvrkii  2nd Wrinnnri f l l  i n t r n d ~ w e ~  9 ~ P W  i n m n n . l i t v  

in quantum statistical mechanics, that has several features that are complementary io 
the well known inequality of Bogoliubov [Z]. This inequality helps in establishing the 
absence of long ranged order (LRO) in the ground state of several generic one- 
dimensional many body problems possessing a continuous symmetry group, such as 
the Heisenberg antiferomagnet (SU(Z)), the interacting Bose gas (U(1)) and the crystal 
(translation group). This is the zero temperature analogue of the Hohenberg-Mermin- 
Wagner theorem [3]. We find that the inequality can be supplemented by infrared 
bounds available for the quantum Heisenberg antiferromagnet (HAFM),  available from 
the work of Dyson, Lieb and Simon (DLS) [4], and together we obtain lower bounds 
for the correlation functions under the assumption of LRO. These bounds have the 
same functional form as the upper bounds available from [4], and imply that if the 
model has LRO then the singular part of the correlation functions is determined. The 
assumpiion of LRO is known io be irue Cor aii spin in ihree dimensions [5,6j, and 
hence we have an interesting rigorous result in this case. The form of the correlation 
function agrees with the results of the hydrodynamic theory of spin waves [7] at 
non-zero temperature and with the Anderson-Kubo theory of spin waves at zero 
temperature [8]. 

Let us first consider the inequality in question. The work of [l] showing that an 
inequa!i!y distinc! from !ha! of 121 can be constructed, raises the guestion: how many 
such 'independent' inequalities exist? We provide an answer: an infinite number of 
such inequalities can be written down. We derive a generalization of which the 
inequalities of [l]  and [Z] are special cases. Of course only a few may he actually 
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useful in physical applications. Firstly let us define a spectral function depending on 
two (non-Hermitian in general) operators (I and b with 2 the partition function: 

1 
P..~(o) =z (1  +exp(-po)) 1 exp(--B&,)(YlnlCC)(CClblY)~(&I, - E, -  0 ) .  (1) 

It is readily seen that 

Pd,o(w) 3 0 (2) 

which is the most fundamental property of the spectral function, and also P ~ , ~ ( - W )  = 
P ~ , ~ ( O ) = ~ ~ , ~ * ( O ) .  Let us also note the following properties of the function p: (1) 
P . + b , c ( O ) = p . , c ( W ) + P b . r ( w ) ,  (2) P, ,~ (o )  = a ~ = , ~ ( w )  where a =constant. The pointwise 
(in w )  nature of (2) is at the root of the generalization set out here. We can in fact 
use the above properties to define a scalar product satisfying the Cauchy-Schwartz iEeqnz!iv 

I p ~ t . b ( ~ ) 1 2 s p ~ r , . ( ~ ) P b i . b ( w ) .  (3) 
The function p is expected to be 'smooth' in the thermodyanamic limit, but for a 

finite'sized system, will consist of a series of delta functions and the manipulations 
carried out out here require the theory of generalized functions for justification, which 
we will not attempt here [9j. We will assume that the functions are sufficiently smooth 
here. Given (3), we see that for any two complex functions,f.t(w), f s (w) ,  labelled by 
the two operators a and b, the integral 

Using the Cauchy-Schwartz inequality, we conclude 

Various choices of the filter functions f generate the different inequalities, the 
inequality of Bogoliubov [Z] is obtained by setting f . ~ ( w )  = & ( U )  = Jtanh(po/Z)/o,  
and that of Pitaevskii and Stringari [l] by setting f a t ( w )  = tanh(po), fb(o) = 1. It is 
clear that the first [2] gives a large weight to frequencies less than k,T and suppresses 
higher frequencies, whereas the second [ 11 favours the opposite regime for one of the 
operators. More general functions can be readily imagined, for example we can take 
f . + ( w )  = a, + a2 tanh(pw/2) and f b ( w )  = 1 with complex aj to generate generalized 
commutators that arise in parafennionic theories. For completeness, we note the results 
of convolution with the following frequently needed filter functions with the notation 
(f(0Ua.b -! dw.f(w)pa,b(w), 

(l)a.b=({% 6)) (tanh(Pw/2)),b = ( [ a ,  bl) ( 6 )  

( w  tanh(pw/2))..b = ( [ [ a ,  HI, bl) (U-' tanh(po/2)),b = P ( a ,  b )  (7) 
where the Duhamel two point function is defined as 

and (A )  stands for the thermal average. 
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We now cast the inequality of [I]  into a more useful form involving equilibrium 
quantities. With fat(-) = tanh(pw), f b ( w )  = 1 we write 

Na', bI)l2<({bt, b))(tanh2(pw/2)).i... (8) 

Now we bound the second term in the RHS of (8) and begin by writing 

We next use the concavity of tanh(x) in [0, 00) to obtain an upper bound (Jensen's 
inequality [lo]) 

where 

@ = (Itanh(8w/2)l)oi,.. (11) 

0~ Q s J ( w  tanh(pw/2)).t..(w-' tanh(pw/2)).t,. . (12) 

From the Cauchy-Schwartz inequality we have 

Since tanh(x)/x is monotonically decreasing in the interval [0, m), we maximize the 
RHS of (10) subject to the constraint (12) giving 

Combining inequalities (8) and (13), we find the final inequality 

It is possible to show that the inequlaity (14) continues to hold if either or both of 
([[a', H I ,  a]) or p(a', a )  are replaced by their respective upper bounds by using the 
fact that y-'" coth(y"") with U = *I is a monotonically decreasing function of y. At 
T = 0 "K, the coth function is replaced by unity and for T # O°K, we can degrade the 
inequality by using coth(x)>(I/x) to write it in a form that is used in the theorems 
concerning absence of LRO [3]. The above form of (14), interpolates usefully between 
the two. 

We now apply this general inequality to the Heisenberg antiferromagnet on a 
hypercubic lattice in d dimensions. Let /A/  stand for the number of sites in the lattice, 
and A* the &ai iattice. We denote g; = (S;SEq), with 

1 
S"=- 1 S:exp(-iq.r) JJi,,,. 

We choose [I]  b=SY,+, and o = S ; ,  where Q = r ( l ,  ... ); whence [a', b]= 
i/AI-'"Sb. If we assume that LRO exists along the x axis then (SQ)=lAl"zmo, where 
m, is the staggered magnetization; thus /([a', b])(=m,. The double commutator is 
readily evaluated using translation invariance as 

(16) ([[St, HI, S 5 J )  = 2c.E; 
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where 

with S = nearesf neighbour and 

d 
E:= 1 (l*cos(qi)). 

i=, 

Upper bounds for the positive constant cx are easily found from lower bounds to 

For the Heisenberg antiferromagnet we are in the fortunate position of having the 
the internal energy; details may be found in [4]. 

infrared bounds on the Duhamel function due to DLS: 

1 
2E:' 

P(S, ' ,  S ? J -  

We can thus bound the correlation function from below under the assumption of LRO. 

Towards this end we define the function G 

G( q )  = 4E: c o t h ( P m )  (20) 

The lower bound for g; can now be found by substituting in (14), shifting q = Q + q' 
and using E:+,o = ET 

g;am@(q)/cx (21) 

whereas the upper bound from DLS is 

The final inequality (23) shows that the transverse spin correlation diverges as 
I/lq - QI at T =  0" and as k,T/lq - QI2 at finite temperatures when the system possesses 
LRO. This provides rigorous support to the theory of spin waves in this system, which 
is based on hydrodynamic reasoning at T#OO [7], and on an expansion in inverse 
powers of S, the spin, at T = W  [8]. It is remarkable that the Gaussian domination 
estimate of the Duhamel two point function [4], upon which our hounds rest, obtains 
the exponents of divergence exactly in these cases ([Ill).  

In the case of one dimension where the Heisenberg antiferromagnet cannot have 
LRO at any temperature, by virtue of the incompatibility of these bounds with the sum 
rule Z,,-g; = 1AIS(S+ l), there is a considerable body of numerical and approximate 
analytical work at T=OK summarized in [12], which suggests for large separation 
that g( r) - ( -l)r(log( r))"*/r,  which means that the bound overestimates the divergence 
near Q significantly. This is not unreasonable since the bounds do not take any 
simplifying factors special to one-dimension into account. 

It is a pleasure to thank Pierre Hohenberg and Elliott Lieb for stimulating discussions, 
and the 'Friends of Statistical Mechanics' at Princetone University for helpful remarks. 
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